Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.063
Filtrar
1.
Eur J Hum Genet ; 30(9): 1051-1059, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35676339

RESUMO

Over 20% of the DNA mismatch repair (MMR) germline variants in suspected Lynch syndrome patients are classified as variants of uncertain significance (VUS). Well-established functional assays are pivotal for assessing the biological impact of these variants and provide relevant evidence for clinical classification. In our collaborative European Mismatch Repair Working Group (EMMR-WG) we compared three different experimental approaches for evaluating the effect of seven variants on mRNA splicing in MMR genes: (i) RT-PCR of full-length transcripts (FLT), (ii) RT-PCR of targeted transcript sections (TTS), both from patient biological samples and (iii) minigene splicing assays. An overall good concordance was observed between splicing patterns in TTS, FLT and minigene analyses for all variants. The FLT analysis depicted a higher number of different isoforms and mitigated PCR-bias towards shorter isoforms. TTS analyses may miss aberrant isoforms and minigene assays may under/overestimate the severity of certain splicing defects. The interpretation of the experimental findings must be cautious to adequately discriminate abnormal events from physiological complex alternative splicing patterns. A consensus strategy for investigating the impact of MMR variants on splicing was defined. First, RNA should be obtained from patient's cell cultures (such as fresh lymphocyte cultures) incubated with/without a nonsense-mediated decay inhibitor. Second, FLT RT-PCR analysis is recommended to oversee all generated isoforms. Third, TTS analysis and minigene assays are useful independent approaches for verifying and clarifying FLT results. The use of several methodologies is likely to increase the strength of the experimental evidence which contributes to improve variant interpretation.


Assuntos
Processamento Alternativo , Neoplasias Colorretais Hereditárias sem Polipose , Reparo de Erro de Pareamento de DNA , Análise Mutacional de DNA , Enzimas Reparadoras do DNA , Mutação com Perda de Função , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Análise Mutacional de DNA/métodos , Análise Mutacional de DNA/normas , Enzimas Reparadoras do DNA/genética , Humanos , Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 119(26): e2202034119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727982

RESUMO

CRISPR diagnostics based on nucleic acid amplification faces barriers to its commercial use, such as contamination risks and insufficient sensitivity. Here, we propose a robust solution involving optochemical control of CRISPR RNA (crRNA) activation in CRISPR detection. Based on this strategy, recombinase polymerase amplification (RPA) and CRISPR-Cas12a detection systems can be integrated into a completely closed test tube. crRNA can be designed to be temporarily inactivated so that RPA is not affected by Cas12a cleavage. After the RPA reaction is completed, the CRISPR-Cas12a detection system is activated under rapid light irradiation. This photocontrolled, fully closed CRISPR diagnostic system avoids contamination risks and exhibits a more than two orders of magnitude improvement in sensitivity compared with the conventional one-pot assay. This photocontrolled CRISPR method was applied to the clinical detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, achieving detection sensitivity and specificity comparable to those of PCR. Furthermore, a compact and automatic photocontrolled CRISPR detection device was constructed.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endodesoxirribonucleases , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , COVID-19/diagnóstico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/efeitos da radiação , Humanos , RNA/efeitos da radiação , Recombinases/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
3.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328562

RESUMO

SARS-CoV-2 variants surveillance is a worldwide task that has been approached with techniques such as Next Generation Sequencing (NGS); however, this technology is not widely available in developing countries because of the lack of equipment and limited funding in science. An option is to deploy a RT-qPCR screening test which aids in the analysis of a higher number of samples, in a shorter time and at a lower cost. In this study, variants present in samples positive for SARS-CoV-2 were identified with a RT-qPCR mutation screening kit and were later confirmed by NGS. A sample with an abnormal result was found with the screening test, suggesting the simultaneous presence of two viral populations with different mutations. The DRAGEN Lineage analysis identified the Delta variant, but there was no information about the other three mutations previously detected. When the sequenced data was deeply analyzed, there were reads with differential mutation patterns, that could be identified and classified in terms of relative abundance, whereas only the dominant population was reported by DRAGEN software. Since most of the software developed to analyze SARS-CoV-2 sequences was aimed at obtaining the consensus sequence quickly, the information about viral populations within a sample is scarce. Here, we present a faster and deeper SARS-CoV-2 surveillance method, from RT-qPCR screening to NGS analysis.


Assuntos
COVID-19/diagnóstico , Análise Mutacional de DNA/métodos , Genoma Viral/genética , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Pandemias/prevenção & controle , Reprodutibilidade dos Testes , SARS-CoV-2/fisiologia , Sensibilidade e Especificidade
4.
Sci Rep ; 12(1): 1614, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102204

RESUMO

As the SARS-CoV-2 pandemic persists, methods that can quickly and reliably confirm infection and immune status is extremely urgently and critically needed. In this contribution we show that combining laser induced breakdown spectroscopy (LIBS) with machine learning can distinguish plasma of donors who previously tested positive for SARS-CoV-2 by RT-PCR from those who did not, with up to 95% accuracy. The samples were also analyzed by LIBS-ICP-MS in tandem mode, implicating a depletion of Zn and Ba in samples of SARS-CoV-2 positive subjects that inversely correlate with CN lines in the LIBS spectra.


Assuntos
COVID-19/sangue , COVID-19/diagnóstico , Imunidade , Lasers , Pandemias , SARS-CoV-2/imunologia , Espectrofotometria Atômica/métodos , Bário/análise , COVID-19/epidemiologia , COVID-19/virologia , Confiabilidade dos Dados , Análise Discriminante , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Aprendizado de Máquina , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Sensibilidade e Especificidade , Zinco/análise
5.
Virchows Arch ; 480(3): 597-607, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35103846

RESUMO

Post-mortem examination plays a pivotal role in understanding the pathobiology of the SARS-CoV-2; thus, the optimization of virus detection on the post-mortem formalin-fixed paraffin-embedded (FFPE) tissue is needed. Different techniques are available for the identification of the SARS-CoV-2, including reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), in situ hybridization (ISH), and electron microscopy. The main goal of this study is to compare ISH versus RT-PCR to detect SARS-CoV-2 on post-mortem lung samples of positive deceased subjects. A total of 27 samples were analyzed by RT-PCR targeting different viral RNA sequences of SARS-CoV-2, including envelope (E), nucleocapsid (N), spike (S), and open reading frame (ORF1ab) genes and ISH targeting S and Orf1ab. All 27 cases showed the N gene amplification, 22 out of 27 the E gene amplification, 26 out of 27 the S gene amplification, and only 6 the ORF1ab gene amplification. The S ISH was positive only in 12 out of 26 cases positive by RT-PCR. The S ISH positive cases with strong and diffuse staining showed a correlation with low values of the number of the amplification cycles by S RT-PCR suggesting that ISH is a sensitive assay mainly in cases carrying high levels of S RNA. In conclusion, our findings demonstrated that ISH assay has lower sensitivity to detect SARS-CoV-2 in FFPE compared to RT-PCR; however, it is able to localize the virus in the cellular context since it preserves the morphology.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Hibridização In Situ/métodos , Pulmão , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Sensibilidade e Especificidade
6.
Viruses ; 14(2)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215902

RESUMO

Efficient, wide-scale testing for SARS-CoV-2 is crucial for monitoring the incidence of the infection in the community. The gold standard for COVID-19 diagnosis is the molecular analysis of epithelial secretions from the upper respiratory system captured by nasopharyngeal (NP) or oropharyngeal swabs. Given the ease of collection, saliva has been proposed as a possible substitute to support testing at the population level. Here, we used a novel saliva collection device designed to favour the safe and correct acquisition of the sample, as well as the processivity of the downstream molecular analysis. We tested 1003 nasopharyngeal swabs and paired saliva samples self-collected by individuals recruited at a public drive-through testing facility. An overall moderate concordance (68%) between the two tests was found, with evidence that neither system can diagnose the infection in 100% of the cases. While the two methods performed equally well in symptomatic individuals, their discordance was mainly restricted to samples from convalescent subjects. The saliva test was at least as effective as NP swabs in asymptomatic individuals recruited for contact tracing. Our study describes a testing strategy of self-collected saliva samples, which is reliable for wide-scale COVID-19 screening in the community and is particularly effective for contact tracing.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/normas , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Saliva/virologia , COVID-19/diagnóstico , COVID-19/virologia , Feminino , Humanos , Masculino , Programas de Rastreamento , Nasofaringe/virologia , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos
7.
Sci Immunol ; 7(68): eabf2846, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148199

RESUMO

Macrophages regulate protective immune responses to infectious microbes, but aberrant macrophage activation frequently drives pathological inflammation. To identify regulators of vigorous macrophage activation, we analyzed RNA-seq data from synovial macrophages and identified SLAMF7 as a receptor associated with a superactivated macrophage state in rheumatoid arthritis. We implicated IFN-γ as a key regulator of SLAMF7 expression and engaging SLAMF7 drove a strong wave of inflammatory cytokine expression. Induction of TNF-α after SLAMF7 engagement amplified inflammation through an autocrine signaling loop. We observed SLAMF7-induced gene programs not only in macrophages from rheumatoid arthritis patients but also in gut macrophages from patients with active Crohn's disease and in lung macrophages from patients with severe COVID-19. This suggests a central role for SLAMF7 in macrophage superactivation with broad implications in human disease pathology.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Transcriptoma/imunologia , Doença Aguda , Adulto , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , COVID-19/genética , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Doença Crônica , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Ativação de Macrófagos/genética , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Análise de Célula Única/métodos , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Transcriptoma/genética
8.
Microbiol Spectr ; 10(1): e0251321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196812

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide. Many variants of SARS-CoV-2 have been reported, some of which have increased transmissibility and/or reduced susceptibility to vaccines. There is an urgent need for variant phenotyping for epidemiological surveillance of circulating lineages. Whole-genome sequencing is the gold standard for identifying SARS-CoV-2 variants, which constitutes a major bottleneck in developing countries. Methodological simplification could increase epidemiological surveillance feasibility and efficiency. We designed a novel multiplex real-time reverse transcriptase PCR (RT-PCR) to detect SARS-CoV-2 variants with S gene mutations. This multiplex PCR typing method was established to detect 9 mutations with specific primers and probes (ΔHV 69/70, K417T, K417N, L452R, E484K, E484Q, N501Y, P681H, and P681R) against the receptor-binding domain of the spike protein of SARS-CoV-2 variants. In silico analyses showed high specificity of the assays. Variants of concern (VOC) typing results were found to be highly specific for our intended targets, with no cross-reactivity observed with other upper respiratory viruses. The PCR-based typing methods were further validated using whole-genome sequencing and a commercial kit that was applied to clinical samples of 250 COVID-19 patients from Taiwan. The screening of these samples allowed the identification of epidemic trends by time intervals, including B.1.617.2 in the third Taiwan wave outbreak. This PCR typing strategy allowed the detection of five major variants of concern and also provided an open-source PCR assay which could rapidly be deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, P.1, and B.1.617.2 variants and of four Omicron mutations on the spike protein (ΔHV 69/70, K417N, N501Y, P681H). IMPORTANCE COVID-19 has spread globally. SARS-CoV-2 variants of concern (VOCs) are leading the next waves of the COVID-19 pandemic. Previous studies have pointed out that these VOCs may have increased infectivity, have reduced vaccine susceptibility, change treatment regimens, and increase the difficulty of epidemic prevention policy. Understanding SARS-CoV-2 variants remains an issue of concern for all local government authorities and is critical for establishing and implementing effective public health measures. A novel SARS-CoV-2 variant identification method based on a multiplex real-time RT-PCR was developed in this study. Five SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, and Omicron) were identified simultaneously using this method. PCR typing can provide rapid testing results with lower cost and higher feasibility, which is well within the capacity for any diagnostic laboratory. Characterizing these variants and their mutations is important for tracking SAR-CoV-2 evolution and is conducive to public infection control and policy formulation strategies.


Assuntos
COVID-19/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/classificação , COVID-19/epidemiologia , Monitoramento Epidemiológico , Humanos , Mutação , Pandemias , Saúde Pública , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Taiwan , Sequenciamento Completo do Genoma
9.
Vopr Virusol ; 66(6): 417-424, 2022 01 08.
Artigo em Russo | MEDLINE | ID: mdl-35019248

RESUMO

INTRODUCTION: Currently, the basis for molecular diagnostics of most infections is the use of reverse transcription polymerase chain reaction (RT-PCR). Technologies based on reverse transcription isothermal loop amplification (RT-LAMP) can be used as an alternative to RT-PCR for diagnostic purposes. In this study, we compared the RTLAMP and RT-PCR methods in order to analyze both the advantages and disadvantages of the two approaches. MATERIAL AND METHODS: For the study, we used reagent kits based on RT-PCR and RT-LAMP. The biological material obtained by taking swabs from the mucous membrane of the oropharynx and nasopharynx in patients with symptoms of a new coronavirus infection was used. RESULTS: We tested 381 RNA samples of the SARS-CoV-2 virus (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) from various patients. The obtained values of the threshold cycle (Ct) for RT-PCR averaged 20.0 ± 3.7 s (1530 ± 300 s), and for RT-LAMP 12.8 ± 3.7 s (550 ± 160 s). Proceeding from the theoretical assumptions, a linear relationship between values obtained in two kits was proposed as a hypothesis; the correlation coefficient was approximately 0.827. At the same time, for samples with a low viral load (VL), the higher Ct values in RT-LAMP did not always correlated with those obtained in RT-PCR. DISCUSSION: We noted a significant gain in time for analysis using RT-LAMP compared to RT-PCR, which can be important in the context of testing a large number of samples. Being easy to use and boasting short turnaround time, RT-LAMP-based test systems can be used for mass screening in order to identify persons with medium and high VLs who pose the greatest threat of the spread of SARS-CoV-2, while RT-PCR-based diagnostic methods are also suitable for estimation of VL and its dynamics in patients with COVID-19.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Programas de Rastreamento/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , Humanos , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade
10.
Mol Biol Rep ; 49(2): 907-915, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35013862

RESUMO

BACKGROUND: Reference genes are necessary for quantitative real-time PCR (qRT-PCR) analysis and their stability can directly influence the accuracy of gene expression result. Miscanthus sacchariflorus, a perennial C4 grass that serves as promising biofuel plant for temperate climates, has not been explored for the identification of stable reference genes yet. MATERIALS AND METHODS: Nine potential reference genes (ACT, EF1a, FBOX, GAPDH, PP2A, SAND, TIP41, TUB and UBC) of M. sacchariflorus under different abiotic (salinity, drought and cadmium) stresses, as well as in two tissues (roots and leaves) were evaluated. The expression stability of these genes were analyzed by four commonly used software programs (geNorm, NormFinder, BestKeeper, ΔCt method and RefFinder). RESULTS: Our results found that FBOX and SAND are the most stable genes among all tested samples. FBOX and EF1a are suitable for gene expression normalization of cadmium-treated samples and salinity-treated leaves. FBOX and PP2A are appropriate reference genes for salt-stressed roots and PEG-treated leaves. The traditional reference gene ACT and GAPDH exhibited the most variable pattern, which would not be recommended for qRT-PCR analysis under different abiotic stresses. Furthermore, the expression levels of PIP2, NHX1 and MT2a under drought, salt and cadmium treatment were detected with above reference genes. CONCLUSIONS: This work identified the appropriate reference genes for qRT-PCR in M. sacchariflorus and FBOX was recommended to be effective internal control for gene expression normalization in M. sacchariflorus in response to different abiotic stresses.


Assuntos
Poaceae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Secas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Estresse Fisiológico/genética
11.
Sci Rep ; 12(1): 1373, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082326

RESUMO

Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease that in most cases occurs sporadic (sALS). The disease is not curable, and its pathogenesis mechanisms are not well understood yet. Given the intricacy of underlying molecular interactions and heterogeneity of ALS, the discovery of molecules contributing to disease onset and progression will open a new avenue for advancement in early diagnosis and therapeutic intervention. Here we conducted a meta-analysis of 12 circulating miRNA profiling studies using the robust rank aggregation (RRA) method, followed by enrichment analysis and experimental verification. We identified miR-451a and let-7f-5p as meta-signature miRNAs whose targets are involved in critical pathogenic pathways underlying ALS, including 'FoxO signaling pathway', 'MAPK signaling pathway', and 'apoptosis'. A systematic review of 7 circulating gene profiling studies elucidated that 241 genes up-regulated in sALS circulation with concomitant being targets of the meta-signature miRNAs. Protein-protein interaction (PPI) network analysis of the candidate targets using MCODE algorithm revealed the main subcluster is involved in multiple cascades eventually leads apoptosis, including 'positive regulation of neuron apoptosis. Besides, we validated the meta-analysis results using RT-qPCR. Indeed, relative expression analysis verified let-7f-5p and miR-338-3p as significantly down-regulated and up-regulated biomarkers in the plasma of sALS patients, respectively. Receiver operating characteristic (ROC) analysis also highlighted the let-7f-5p and miR-338-3p potential as robustness plasma biomarkers for diagnosis and potential therapeutic targets of sALS disease.


Assuntos
Esclerose Amiotrófica Lateral/sangue , Esclerose Amiotrófica Lateral/genética , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , MicroRNAs/sangue , MicroRNAs/genética , Transcriptoma/genética , Algoritmos , Esclerose Amiotrófica Lateral/metabolismo , Biomarcadores/sangue , Regulação para Baixo/genética , Pesquisa Empírica , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mapas de Interação de Proteínas/genética , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Regulação para Cima/genética
12.
PLoS One ; 17(1): e0262170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051202

RESUMO

The SARS-CoV-2 responsible for the ongoing COVID pandemic reveals particular evolutionary dynamics and an extensive polymorphism, mainly in Spike gene. Monitoring the S gene mutations is crucial for successful controlling measures and detecting variants that can evade vaccine immunity. Even after the costs reduction resulting from the pandemic, the new generation sequencing methodologies remain unavailable to a large number of scientific groups. Therefore, to support the urgent surveillance of SARS-CoV-2 S gene, this work describes a new feasible protocol for complete nucleotide sequencing of the S gene using the Sanger technique. Such a methodology could be easily adopted by any laboratory with experience in sequencing, adding to effective surveillance of SARS-CoV-2 spreading and evolution.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Genes Virais , Pandemias/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Análise de Sequência de RNA/métodos , Glicoproteína da Espícula de Coronavírus/genética , Sequência de Bases , Brasil/epidemiologia , COVID-19/virologia , Testes Diagnósticos de Rotina/métodos , Eletroforese em Gel de Ágar/métodos , Monitoramento Epidemiológico , Humanos , Mutação , RNA Viral/genética , RNA Viral/isolamento & purificação
13.
PLoS One ; 17(1): e0262178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051204

RESUMO

BACKGROUND: COVID-19 is an ongoing public health pandemic regardless of the countless efforts made by various actors. Quality diagnostic tests are important for early detection and control. Notably, several commercially available one step RT-PCR based assays have been recommended by the WHO. Yet, their analytic and diagnostic performances have not been well documented in resource-limited settings. Hence, this study aimed to evaluate the diagnostic sensitivities and specificities of three commercially available one step reverse transcriptase-polymerase chain reaction (RT-PCR) assays in Ethiopia in clinical setting. METHODS: A cross-sectional study was conducted from April to June, 2021 on 279 respiratory swabs originating from community surveillance, contact cases and suspect cases. RNA was extracted using manual extraction method. Master-mix preparation, amplification and result interpretation was done as per the respective manufacturer. Agreements between RT-PCRs were analyzed using kappa values. Bayesian latent class models (BLCM) were fitted to obtain reliable estimates of diagnostic sensitivities, specificities of the three assays and prevalence in the absence of a true gold standard. RESULTS: Among the 279 respiratory samples, 50(18%), 59(21.2%), and 69(24.7%) were tested positive by TIB, Da An, and BGI assays, respectively. Moderate to substantial level of agreement was reported among the three assays with kappa value between 0 .55 and 0.72. Based on the BLCM relatively high specificities (95% CI) of 0.991(0.973-1.000), 0.961(0.930-0.991) and 0.916(0.875-0.952) and considerably lower sensitivities with 0.813(0.658-0.938), 0.836(0.712-0.940) and 0.810(0.687-0.920) for TIB MOLBIOL, Da An and BGI respectively were found. CONCLUSIONS: While all the three RT-PCR assays displayed comparable sensitivities, the specificities of TIB MOLBIOL and Da An were considerably higher than BGI. These results help adjust the apparent prevalence determined by the three RT-PCRs and thus support public health decisions in resource limited settings and consider alternatives as per their prioritization matrix.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/epidemiologia , Testes Diagnósticos de Rotina/métodos , Pandemias/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Teorema de Bayes , COVID-19/virologia , Criança , Estudos Transversais , Etiópia/epidemiologia , Reações Falso-Positivas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular/métodos , RNA Viral/genética , RNA Viral/isolamento & purificação , Sensibilidade e Especificidade , Adulto Jovem
14.
PLoS One ; 17(1): e0262656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051208

RESUMO

SARS-CoV-2, the cause of COVID-19, requires reliable diagnostic methods to track the circulation of this virus. Following the development of RT-qPCR methods to meet this diagnostic need in January 2020, it became clear from interlaboratory studies that the reported Ct values obtained for the different laboratories showed high variability. Despite this the Ct values were explored as a quantitative cut off to aid clinical decisions based on viral load. Consequently, there was a need to introduce standards to support estimation of SARS-CoV-2 viral load in diagnostic specimens. In a collaborative study, INSTAND established two reference materials (RMs) containing heat-inactivated SARS-CoV-2 with SARS-CoV-2 RNA loads of ~107 copies/mL (RM 1) and ~106 copies/mL (RM 2), respectively. Quantification was performed by RT-qPCR using synthetic SARS-CoV-2 RNA standards and digital PCR. Between November 2020 and February 2021, German laboratories were invited to use the two RMs to anchor their Ct values measured in routine diagnostic specimens, with the Ct values of the two RMs. A total of 305 laboratories in Germany were supplied with RM 1 and RM 2. The laboratories were requested to report their measured Ct values together with details on the PCR method they used to INSTAND. This resultant 1,109 data sets were differentiated by test system and targeted gene region. Our findings demonstrate that an indispensable prerequisite for linking Ct values to SARS-CoV-2 viral loads is that they are treated as being unique to an individual laboratory. For this reason, clinical guidance based on viral loads should not cite Ct values. The RMs described were a suitable tool to determine the specific laboratory Ct for a given viral load. Furthermore, as Ct values can also vary between runs when using the same instrument, such RMs could be used as run controls to ensure reproducibility of the quantitative measurements.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Testes Diagnósticos de Rotina/métodos , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Carga Viral/métodos , COVID-19/epidemiologia , COVID-19/virologia , Genes Virais , Alemanha/epidemiologia , Humanos , Reprodutibilidade dos Testes
15.
PLoS One ; 17(1): e0262820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051239

RESUMO

BACKGROUND: Early and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to prevent spread of the infection. Understanding of the antibody response to SARS-CoV-2 in patients with coronavirus disease 2019 (COVID-19) is insufficient, particularly in relation to those whose responses persist for more than 1 month after the onset of symptoms. We conducted a SARS-CoV-2 antibody test to identify factors affecting the serological response and to evaluate its diagnostic utility in patients with COVID-19. METHODS AND FINDING: We collected 1,048 residual serum samples from 396 patients with COVID-19 confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR) for SARS-CoV-2. The samples had been used for routine admission tests in six healthcare institutions in Daegu. Antibody to SARS-CoV-2 was analyzed and the cutoff index (COI) was calculated for quantitative analysis. The patients' information was reviewed to evaluate the relationship between antibody positivity and clinical characteristics. The anti-SARS-CoV-2 antibody positivity rate was 85% and the average COI was 24·3. The positivity rate and COI increased with time elapsed since symptom onset. Anti-SARS-CoV-2 antibody persisted for at least 13 weeks after symptom onset at a high COI. There was a significant difference in anti-SARS-CoV-2 antibody positivity rate between patients with and without symptoms, but not according to sex or disease course. The descending COI pattern at weeks 1 to 5 after symptom onset was significantly more frequent in patients who died than in those who recovered. CONCLUSIONS: Anti-SARS-CoV-2 antibody persisted for at least 13 weeks at a high COI in patients with COVID-19. A decreasing COI pattern up to fifth week may be associated with a poor prognosis of COVID-19. As new treatments and vaccines are introduced, it is important to monitor continuously the usefulness of anti-SARS-CoV-2 antibody assays.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/sangue , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Idoso , Anticorpos Antivirais/imunologia , COVID-19/diagnóstico , COVID-19/imunologia , Teste de Ácido Nucleico para COVID-19/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real/métodos , República da Coreia/epidemiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Sensibilidade e Especificidade
16.
J Clin Lab Anal ; 36(1): e24161, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34882825

RESUMO

BACKGROUND: Various nucleic acid amplification assays for the diagnosis of SARS-CoV-2 infection have been developed, and there is a need to assess their test performance relative to one another. The aim of this study was to compare the performance characteristics of the Biosewoom Real-Q 2019-nCoV assay targeting the E and RdRP genes to DaAn Gene 2019-nCoV kit targeting the N gene and ORF1ab in the diagnosis of SARS-CoV-2. METHODS: We performed a diagnostic comparison study by testing nasopharyngeal samples for SARS-CoV-2 using the two reverse transcription polymerase chain reaction (RT-PCR) assays. Assay agreement was assessed by overall percent agreement, negative percent agreement, positive percent agreement, and Cohen's kappa coefficient. RESULTS: A total of 48 nasopharyngeal samples were tested using the two assays. One sample was invalid, and three showed inconclusive results with Real-Q; hence, 44 were included for the comparative analysis. Overall, percent agreement between the assays was 93.2% (95% CI 81.3%-98.6%), Positive percent agreement (PPA) was 86.4% (95% CI 65.1%-97.1%) and negative percent agreement (NPA) was 100% (95% CI 84.6%-100%). The kappa coefficient was 0.86 (95% CI 0.72-1.01). Three samples (6.8%) were positive with DaAn gene kit and negative with Real-Q. The fluorescence intensity for Real-Q reporter dyes was low. CONCLUSION: The two kits showed high levels of concordance in their detection of SARS-CoV-2 despite having different gene targets. The Biosewoom kit can be improved through addressing the fluorescence intensity of the target dyes, and feedback was given to the manufacturer.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Nasofaringe/virologia , Fosfoproteínas/genética , Kit de Reagentes para Diagnóstico
17.
Emerg Microbes Infect ; 11(1): 14-17, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34783635

RESUMO

Knowledge of SARS-CoV-2 variants is essential for formulating effective control policies. Currently, variants are only identified in relatively small percentages of cases as the required genome sequencing is expensive, time-consuming, and not always available. In countries with facilities to sequence the SARS-CoV-2, the Delta variant currently predominates. Elsewhere, the prevalence of the Delta variant is unclear. To avoid the need for sequencing, we investigated a RT-FRET-PCR that could detect all SARS-CoV-2 strains and simultaneously identify the Delta variant. The established Delta RT-FRET-PCR was performed on reference SARS-CoV-2 strains, and human nasal swab samples positive for the Delta and non-Delta strains. The Delta RT-FRET-PCR established in this study detected as few as ten copies of the DNA target and 100 copies of RNA target per reaction. Melting points of products obtained with SARS-CoV-2 Delta variants (around 56.1°C) were consistently higher than products obtained with non-Delta strains (around 52.5°C). The Delta RT-FRET-PCR can be used to diagnose COVID-19 patients and simultaneously identify if they are infected with the Delta variant. The Delta RT-FRET-PCR can be performed with all major thermocycler brands meaning data on Delta variant can now be readily generated in diagnostic laboratories worldwide.


Assuntos
COVID-19/virologia , Transferência Ressonante de Energia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Alelos , Substituição de Aminoácidos , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Mutação , RNA Viral , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/classificação , Glicoproteína da Espícula de Coronavírus/genética
18.
J Med Virol ; 94(4): 1450-1456, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34786736

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is an overwhelming crisis across the world. Human Coronavirus OC43 (HCoV-OC43) is a Betacoronavirus responsible mostly for mild respiratory symptoms. Since the presentations of HCoV-OC43 and severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) are believed to resemble a lot, the aim of this study was to evaluate the frequency and characteristics of HCoV-OC43 in the current pandemic and the rate of coinfection for the two viruses. One hundred and seventeen patients referred to Children's Medical Center, Tehran, Iran with respiratory symptoms were included. Real-time reverse transcription-polymerase chain reaction (RT-PCR) methods were performed for the detection of HCoV-OC43 and SARS-COV-2. Totally, 23 (20%) had a positive RT-PCR for HCoV-OC43 and 25 (21%) were positive for SARS-COV-2. Two patients (2%) had a positive PCR for both HCoV-OC43 and SARS-COV-2. The two groups showed significant differences in having contact with family members with suspected or confirmed COVID-19 (p = 0.017), fever (p = 0.02), edema (p = 0.036), vomiting (p < 0.001), abdominal complaints (p = 0.005), and myalgia (p = 0.02). The median level of lymphocyte count in patients with HCoV-OC43 was significantly lower than patients with SARS-COV-2 infection (p = 0.039). The same frequency of SARS-COV-2 and HCoV-OC43 was found in children with respiratory symptoms during the COVID-19 pandemic. The rate of coinfection of SARS-COV-2 with HCoV-OC43 in our study was 0.08. Further research into the cocirculation of endemic coronaviruses, such as HCoV-OC43 and SARS-CoV2, in different regions, is highly recommended. Attempts to determine the geographic distribution and recruit more flexible test panel designs are also highly recommended.


Assuntos
COVID-19/diagnóstico , Coronavirus Humano OC43/genética , Infecções Respiratórias/virologia , SARS-CoV-2/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Irã (Geográfico) , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
20.
APMIS ; 130(2): 95-100, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34758150

RESUMO

The aim was to determine the accuracy of anterior nasal swab in rapid antigen (Ag) tests in a low SARS-CoV-2 prevalence and massive screened community. Individuals, aged 18 years or older, who self-booked an appointment for real-time reverse transcriptase-polymerase chain reaction (RT-PCR) test in March 2021 at a public test center in Copenhagen, Denmark were included. An oropharyngeal swab was collected for RT-PCR testing, followed by a swab from the anterior parts of the nose examined by Ag test (SD Biosensor). Accuracy of the Ag test was calculated with RT-PCR as reference. We included 7074 paired conclusive tests (n = 3461, female: 50.7%). The median age was 48 years (IQR: 36-57 years). The prevalence was 0.9%, that is, 66 tests were positive on RT-PCR. Thirty-two had a paired positive Ag test. The sensitivity was 48.5% and the specificity was 100%. This study conducted in a low prevalence setting in a massive screening set-up showed that the Ag test had a sensitivity of 48.5% and a specificity of 100%, that is, no false positive tests. The lower sensitivity is a challenge especially if Ag testing is not repeated frequently allowing this scalable test to be a robust supplement to RT-PCR testing in an ambitious public SARS-CoV-2 screening.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Nariz/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/isolamento & purificação , Adulto , Antígenos Virais/análise , Antígenos Virais/imunologia , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...